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We study the shapes of elastic membranes under the simultaneous exertion of tensile and compressive forces
when the translational symmetry along the tension direction is broken. We predict a multitude of morphological
phases in various regimes of a two-dimensional parameter space �� ,�� that defines the relevant mechanical and
geometrical conditions. These parameters are, respectively, the ratio between compression and tension, and the
wavelength contrast along the tension direction. The predicted patterns emerge through new transition and
instability mechanisms and include several types of irregular and smooth cascades composed of wrinkles and
sharp folds. In particular, the hierarchical morphology predicted under high tension and large wavelength
contrast ���1,��1�, explains recent experimental observations on ultrathin membranes floating on liquid.
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Elastic sheets exhibit a remarkable variety of patterns in
response to a featureless distribution of forces or geometric
constraints. Familiar examples are the crumpled shapes of
papers and foils under isotropic confinement �1–3�, the peri-
odic arrays of wrinkles on a uniaxially stressed skin �4�, and
the wavy edge of a plastic sheet that is ripped apart �5�. The
realization that essential features of natural �5,6� and man-
made �7� films are related to the coupling between geometry
and mechanics of thin elastic membranes �1� has inspired a
renewed interest in this problem, whose foundations had
been set many decades ago �8�. Central questions that guide
past and current research in this field are the following: what
are the fundamental instabilities by which the spatial sym-
metry of elastic membrane is broken? What are the charac-
teristic features of patterns that emanate from these instabili-
ties? Finally, one may ask—is it possible to classify the rich
variety of observed membrane patterns in a “phase diagram,”
whose axes correspond to a small set of universal morpho-
logically relevant parameters?

In this Rapid Communication we address these questions
by focusing on a simple system: a homogenous membrane of
highly symmetric �rectangular� shape that is bent due to a
uniaxial compression �Fig. 1� along ŷ. We assume that the
membrane is under uniform tension �along x̂� and that
boundary conditions �BCs� at one edge �x=0� forbid the for-
mation of an “ideal” one-dimensional �1D� shape. One may
guess that the membrane shape should posses the highest
symmetry allowed by the constraints and is thus some super-
position of the Fourier modes that compose the ideal bent
shape and the deformed edge. A paper sheet that is forced in
a similar fashion to Fig. 1 reveals, however, that such highly
symmetric shape is rarely obtained. This problem thus en-
ables one to uncover the mechanisms, by which the spatial
symmetry associated with the system and imposed con-
straints, is broken. A tensionless version of this “curtain
problem” �with flat edge at x=0� was studied by Pomeau and
Rica �9�, who predicted the emergence of a cascade of sharp
folds as x→0. A central result of our analysis is the predic-
tion of a series of elastic “period fissioning” instabilities that
govern the formation of a smooth cascade of wrinkles when
sufficiently large tension is exerted along x̂. This result ex-
plains an experimental observation that motivated this Rapid
Communication: a repetitive steplike increase in wrinkle pe-
riodicity near an edge �x=0� of an ultrathin uniaxially com-

pressed membrane that is floating on liquid �10� and subject
to tension and geometric frustration due to strong capillary
forces. Furthermore, we identify two dimensionless param-
eters that represent the mechanical conditions �� is the ratio
between compression along ŷ and tension along x̂� and geo-
metric frustration �� is the imposed wavelength contrast
along x̂�. Our analysis leads us to conjecture a surprisingly
rich phase diagram �Fig. 2� that is spanned by these param-
eters and describes all possible membrane patterns in this
problem. In addition to explaining the observations of �10�,
we predict the following hierarchical structures: �a� smooth
cascades �Fn� with any n generations of wrinkles �for small �
and ��1 /���, �b� irregular shapes �In� composed of any k
generations of sharp folds �for large ��, and �c� mixed pat-
terns �Mn,k�, in which n generations of smooth wrinkles “co-
exist” with k generations of sharp folds �for small � and �
�1 /���. This picture raises fundamental questions concern-
ing the nature of morphological phase transitions in elastic
membranes that may be related to the emergence of hierar-
chical patterns in other energy-dominated systems, such as
edges of type-I superconductors �11�.

We consider a long rectangular membrane �Fig. 1� of
thickness t�W, L, supported on a liquid substrate and bent
due to compressive forces along the two edges y=0, W, that
are relatively displaced by a distance 	�W. If the edges at
x=0, −L are free, a 1D sinusoidal wrinkling pattern is
formed, whose wavelength 2
 /q0 reflects a balance between
the energetic cost of membrane bending and gravity of the
lifted liquid mass. A tension along x̂ does not affect this ideal
1D pattern. Now we assume that an unstrained deformation
of the edge x=0 imposes there a sinusoidal profile of wave
number qe= �1+��q0 and ask for the energetically favorable
membrane configuration under these conditions. This prob-
lem is similar to �9�, with three crucial differences: �i� we
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FIG. 1. �Color online� Schematics of membrane geometry.
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assume a uniform �x independent� displacement 	�W
�rather than uniform compression �yy = P�; �ii� we assume a
uniform tension �xx=T in x̂ �rather than tensionless mem-
brane�; and �iii� we assume any positive wavelength contrast
��0 �rather than a flat edge at x=0 that corresponds to �
→
 by Eq. �2a��. A liquid substrate is assumed both for
simplicity and for comparison with the observations of �10�.
Our formalism and results are generalizable, however, to
wrinkling phenomena in which restoring force is associated
with solid substrate or for buckled free-standing membranes.
Our analysis proceeds as follows: first, we obtain the energy

to quadratic order in 	̃=	 /W. Second, we show that this
approximation is valid only if T is sufficiently large. This
leads to conjecture I, concerning a transition �S-I� between
smooth patterns �high tension� and irregular ones �low ten-
sion�. Third, we address the high tension regime and dis-
cover the period fissioning instability that leads to the forma-
tion of smooth cascade of wrinkles.

To O�	̃2�, the areal energy density of a membrane shape
��x ,y� is �10�

u =
1

2
�B��2��2 + �g�2 + ��x��� ��

�y
�2

− 2	̃	 + T� ��

�x
�2� , �1�

where the compressive stress �yy =��x� appears as a
Lagrange multiplier that forces inextensibility of contour
lines parallel to the ŷ direction. The membrane bending
modulus is B
Et3, where E is the Young’s modulus �8� and
� is the liquid density. Let us review first the case when both
edges x=0 and −L are free �10,12�. Assuming a 1D periodic
pattern, ��x ,y�=� sin�qy� one finds

� =
2

q
�	̃ , �2a�

u

	
= − � =

�g

q2 + Bq2, �2b�

with energy density u=−�0	 minimized for q0= ��g /B�1/4

and �0=−2�B�g. The parameter � is hence defined as the
ratio ��0� /T. The energy of the shape �Eq. �2�� is −�0	L,
whereas the energy of a planar compressed membrane is
1
2Y	̃2WL, where Y 
Et is the stretching modulus. The
threshold value, below which the membrane remains flat, is

thus 	̃min=2�0 /Y �	̃min→0 as t→0�. Consider now the case
where the edge x=0 is forced to take an unstrained sinu-

soidal shape �Eq. �2a�� with a wave number qe= �1+��q0. We
assume a length L large enough such that away from the
deformed edge the membrane recovers its periodic energeti-
cally favorable shape with q=q0. A natural guess for the
shape is then a state that retains the highest symmetry pos-
sible under these constraints:

��x,y� = �0�x�sin�q0y� + �1�x�sin�q1y� , �3�
where

q0
2�0

2 + q1
2�1

2 = 4	̃ , �4�
and

lim
x→X0

�1�x� = 0, �5a�

lim
x→X1

�0�x� = 0, �5b�

where Eq. �4� is the inextensibility condition �recall that 	̃
�1� and X0=−L, X1=0, and q1=qe are introduced to sim-
plify the forthcoming analysis. As we show below, the
simple pattern �Eq. �3�� gives way to distinct types of hier-
archical morphologies for most parameters values �� ,��.

The smooth shape �Eq. �3�� favored naturally by the har-
monic energy �Eq. �1�� is markedly different from the irregu-
lar cascade described by �9� �for �→
� in the tensionless
case T=0. This difference reflects the anharmonic energy

uG
O�	̃4� associated with the Gaussian curvature and,
hence, strain imposed in the membrane by a wavelength con-
trast ��0 �13�. Such energetic cost favors the formation of
flat strain-free facets separated by narrow strain-focusing
zones �1�. This mechanism underlies the emergence of a
sharp folds cascade when T=0 �9�. If tension exists, flat fac-
ets are penalized by the harmonic term uT=T��x��2, and a
smooth shape �Eq. �3�� is thus preferable if T is large enough.
A transition from irregular to smooth shapes is thus expected

if uG�uT. This inequality implies 	̃�T /Y �13�. Together

with the threshold condition 	̃� ��0� /Y, we obtain a neces-
sary condition for the existence of a smooth shape: �
= ��0� /T�1. We thus conclude that a transition from an ir-
regular sharply folded pattern �9� to a smooth shape occurs at
�SI
O�1�. A more detailed analysis shows that �SI increases
with � and that �SI��→0��0 �14�. Since under tensionless
conditions ��→
� with �→
, the shape is an infinite cas-
cade of folds �9� we conjecture.

Conjecture I. There exists a “branching” series �bn���
,
such that for �� ,�� with ���SI���, bn������bn+1���, the
morphology is at phase In :n generations of sharp folds.

Conjecture I is depicted in Fig. 2, where the limit �� ,�
→
� corresponds to Pomeau-Rica infinite cascade.

Hence we focus on the asymptotic regime �� ,���SI����,
where a smooth shape is expected. Motivated by the hierar-
chical wrinkling patterns observed in �10�, we expect that the
highly symmetric pattern �Eq. �3�� undergoes a period fis-
sioning, where it becomes unstable to the emergence of a
discrete set of alternating Fourier modes with wave numbers
q1 ,q2 , . . . �q0�qi�qe�. This inspires us to introduce a type
of minimizers, termed as “n strip,” to the energy �Eq. �1��
that characterize such broken-symmetry states. These n strips
are constructed below from the elementary form �3�, hence
called “1-strip” �see Figs. 3�b� and 3�c��. Therefore, we start
by analyzing the highly symmetric state �Eq. �3��.
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FIG. 2. �Color online� A conjectured phase diagram for stressed

membranes �	̃�1, L̄�1�. The axis correspond to the parameters
�� ,��. The irregular �In�, period-fissioning �Fn�, and mixed �Mn,k�
morphologies are described below.
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A. 1-strip

We transform to the dimensionless set

x̄ =
x

lT
, ȳ =

y

lT
, �̄ =

�

2lT
��	̃

, ū =
u

4	̃T�2
, �̄ =

�

T
, aj =��qjlT,

�6�

where lT=�T /�g and a0=1. A minimal energy profile �Eq.
�3�� satisfies Euler-Lagrange �EL� equations for the func-
tional �1�:

M�a0, x̄��̄0 − �1 + 2�a0
2��̄0� + �2�̄0� = 0, �7�

M�a1, x̄��̄1 − �1 + 2�a1
2��̄1� + �2�̄1� = 0, �8�

where

a0
2�̄0�x̄�2 + a1

2�̄1�x̄�2 = 1, �9�

and

M�ai, x̄� � ai
4 + 1 + �̄�x̄�ai

2/� , �10�

is the restoring force on 1D wrinkles with wave number ai
�a0. With the inextensibility constraint �Eq. �9��, Eqs. �7�
and �8� become a nonlinear ordinary differential equation

�ODE� for �̄0�x̄� �alternatively, �̄1�x̄��. One may show �14�
that for

� � 1, a1 � 1/�� , �11�

the fourth derivatives �associated with bending forces due to
curvature along x̂� are negligible, and the BCs �Eq. �5�� are
thus sufficient for solving the resulting second-order ODE.
As we show below, the asymptotic behavior at the two ends

X̄0=−L̄1 and X̄1=0, is essential for the iterative construction
of n-strip solutions. We therefore address it now. Some alge-
braic manipulations of Eqs. �5a�, �5b�, and �7�–�10� �14�
yield these asymptotics in terms of two constants C1, Z1:

x̄ → X̄0
+:�̄1 =

C1

a1
sinh��M+�a1,a0,C1��x̄ − X̄0�� , �12�

x̄ → X̄1
−:�̄0 =

Z1

a0
sin��− M−�a1,a0,Z1��x̄ − X̄1�� , �13�

M− �
a0

4 + 1 − a0
2�a1

2 + 1
a1

2�
1 − Z1

2� a0

a1
�2 , M+ �

a1
4 + 1 − a1

2�a0
2 + 1

a0
2�

1 + C1
2� a1

a0
�2 . �14�

It is useful to express the length L̄1 and the constant Z1, as
functions of C1, which can be obtained using analytic match-
ing or numerical integration �15�. A characteristic highly
symmetric solution of the form �3� with a1=2 is presented in
Fig. 3�b�. The energetic cost U1�� ,�� �where �=a1−1� with
respect to the 1D periodic wrinkling shape can now be cal-
culated �to leading order in �� using Eq. �1�. We found the
linear behavior: U1���−1� plotted as a gray solid line
�logarithmic scale� in Fig. 3�a�.

B. n-strip

Inspired by experimental observations �10� we define
n-strip states as follows: n consecutive strips parallel to ŷ,
with series of wave numbers Q� n= �q0�q1¯ �qn−1�qn
=qe� and borderlines �X1 , . . . ,Xn−1� �with X0=−L and Xn=0�.
The length of the jth strip is Lj =Xj −Xj−1 and the profile is
described there by a superposition of type �3� with the
change in subscripts:

0 → j − 1, 1 → j . �15�

An example of a computed 2-strip is plotted in Fig. 3�c�. In
order to see how a n-strip solution is constructed uniquely
from a series of 1-strip solutions, consider some �, aj �that

satisfy Eqs. �11� and �15��, and a 1-strip profile �̄ j−1�x̄� , �̄ j�x̄�
in the interval �X̄j−1 , X̄j� given by solving Eqs. �5a�, �5b�,
�7�–�10�, and �15�. The above analysis of 1-strip solutions

implies that the length L̄j and the functions �̄ j−1�x̄� , �̄ j�x̄� are
uniquely given by the parameter Cj that appears in the

asymptotic �Eqs. �12� and �15�� at x̄→ X̄j−1
+ . This parameter is

determined iteratively by requiring �̄ j−1� �x̄→ X̄j−1
+ �= �̄ j−1� �x̄

→ X̄j−1
− �, where the last term is determined from the

asymptotic �Eq. �13�� of the �j−1�th strip in the limit x̄

→ X̄j−1
− . This “stitching” condition is necessary to avoid a

diverging bending force ��̄ j−1� � near X̄j−1 �16�. Algebraic ma-
nipulations similar to those underlying Eqs. �12�–�14� give

Cj =� − � aj−2

aj
�2

M−�aj−1,aj−2,Zj−1�Zj−1
2

aj
4 +1− aj

2�aj−1
2 + 1

aj−1
2 � + � aj−2

aj−1
�2

M−�aj−1,aj−2,Zj−1�Zj−1
2

.

�16�

The jth strip is thus determined iteratively from the �j
−1�th strip, and the whole n-strip is fully described by Q� n.

Next, we used Eq. �1� to compute the energy of n-strips
with n�3 in the interval �� �0,20�. Minimizing energy �for
given n and �� over all series Q� n with qn=q0��+1�, we ob-
tained the result plotted in Fig. 3�a� �17�. This indicates that
for ��1, a new symmetry-breaking mechanism exists,
where the highly symmetric �1-strip� shape becomes unstable
to the formation of n-strips for �� f1�0��3.2. Figure 3 and
Eq. �11� lead us to conjecture.

Conjecture II. There exists a period-fissioning series
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FIG. 3. �Color online� �a� Energies Un�� ,�� of n-strip ���1 and
n=1–3� obtained by minimization over all n-strip shapes �Q� n�. Di-
mensionless convention �Eq. �6�� is used. ��b� and �c�� Computed
patterns of 1-strip ��=1� and 2-strip ��=3 with Q� = �1,2 ,4��.
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�fn���
, such that for �� ,�� with �SI������ �1+��2, fn���
��� fn+1���, the morphology is at phase Fn :n-strip shape.

With conjectures I and II, the morphology is described for
all �� ,��, except ���SI���, ��1 /��. We address this re-
gime, by recalling Eq. �2b�, that indicates an increase in the
compression ��x� along x̂ from �0 to ��0�1+��2 at x=0.
Following our argument underlying conjecture I, we notice
that if �2� ��0� /T=� then uT�uG in a region near the edge
x=0 even for ��1. Hence, for �2�� and ���SI���, we ex-
pect a mixed phase Mn,k: patterns composed of a smooth
n-strip away from x=0 and k generations of sharp folds near
x=0.

In the experiments of �10�, ultrathin rectangular mem-
branes are under compression �0�−2��gB �since 	̃�1�
and tension T�� along x̂, where � is the water-vapor surface
tension. Typical values of B ,� ,� imply �= ��0� /T�10−2

�10�. Translational symmetry of wrinkles along x̂ is broken
by the meniscus �at x�0� that is induced by the wrinkled
edge �x=0�. The meniscus energy Umen�� ,��= 1

2�−1�1
+��−2��2+ ��+1�2 �10� favors small amplitude and hence
large wave number at x=0 �see Eq. �2a��. A balance with the
elastic energy Un�� ,�� of a n-strip �17� gives rise �for ��1�
to large wavelength contrast � beyond threshold for the pe-
riod fissioning instability. The smooth wrinkling cascades of
�10� are thus n-strips. Numerical evaluation of Umen�� ,��
+Un�� ,�� for various values of n yields minimization of the
total energetic cost for n=2, in good agreement with the
three generations of wrinkles observed in �10�. A detailed
comparison between the observed patterns and the theoreti-
cally predicted n-strip �Q� n� is currently underway �14�.

Our model was inspired by experiments �10�, in which
capillary forces imply both tension and breaking of 1D sym-
metry �along x̂�. Our analysis predicts: �i� a series of period
fissioning instabilities that give rise to smooth wrinkling cas-

cades under large tension and �ii� the existence of distinct
morphological phases of stressed membranes characterized
by irregular �In�, smooth �Fn�, and mixed �Mn,k� patterns.
These predictions do not depend on the physical nature of
the exerted forces and should be observed under rather gen-
eral types of forces. Natural questions that await further ex-
perimental and computational studies concern the appropri-
ate definition of the parameters � ,� and the possible
modifications of Fig. 2 necessary to describe nonideal con-
ditions, such as nonrectangular shape, nonuniform tension,
and nonsinusoidal edge. Furthermore, the predicted transi-
tion between smooth patterns composed of a finite number of
Fourier modes �Fn� and irregular ones �In� could be of the
analyticity breaking type that is associated with
commensurate-incommensurate transitions �18�. This obser-
vation and the possible duality hinted by Fig. 2 between
transitions among smooth and among irregular patterns may
reveal unknown links between patterns of elastic membranes
and other energy-minimizing systems, in which hierarchical
patterns emerge under boundary forces and geometric con-
straints �11�. Finally, it is naive to expect that the multitude
of patterns associated with inhomogeneous metric �5�, biax-
ial compression �19�, or confinement �1–3� are included in a
two-dimensional �2D� diagram that characterizes homog-
enous nearly planar uniaxially compressed membranes. One
may ask though, whether Fig. 2 is a cornerstone of a higher-
dimensional space spanned by �, �, and other universal pa-
rameters that does describe the rich variety of patterns exhib-
ited by elastic membranes.
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J. Machta for critical reading of the Rapid Communication;
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